ImageJ Macros

Description

The workflow measures the growth of cells in 3D, combining an ImageJ macro for preprocessing and successive tracking using Imaris.  

The sample dataset (available in the github repository) contains 2-Photon images of neurons. The neurons were imaged in 3D at two time frames.To allow measuring significant differences in cell volume, the time gap between the frames is large (ca. 30 min) and the animal was removed in the waiting phase. For this reason, there is a considerable shift in sample position between the frames that has to be corrected before cell detection and tracking.

The workflow consists of following steps:

1. Import of single tiff slices [imageJ macro]

2. Organizing the data in a 4D time series with 2 time frames [imageJ macro]

3. Correction of shift between the time frames by rigid registration [imagJ macro]

4. Bleaching correction [imageJ macro]

5. Export of preprocessed image data in ics/ids format [imageJ macro]

6. Import of ics/ids data to Imaris [Imaris]

7. Cell object detection as "Imaris Surface Object" [Imaris]

8. Tracking cell objects over time [Imaris]

9. Split Tracks (use Imaris XT extension "Split Tracks") to generate single cell objects [Imaris]

10. Export the statistics: Select the complete folder, go to the statistics tab and use ‚Full Export’ [Imaris]

The preprocessing macro can be referenced here.

The sample images were acquired by Cordula Ulbrich (Petzold Group at German Center of Neurodegenerative Disesases (DZNE), Bonn, Germany).

Input data type: tiff

Output data type: data table

has function
Description

The linked webpage presents a collection of ImageJ macros for Intelligent Imaging (Feedback to microscope system for the secondary scan). 

An ImageJ macro able to control some microscopes (Micro-manager or Leica CAM controlled) to acquire high resolution images of only some structures (e.g. isolated cells) or events (e.g. mitosis) within a sample. The scan is sequenced as a primary (low resolution monitoring) scan and a secondary (high resolution, multi-dimensional) scan.

has function
Description

This macro is a plugin macro to the "Intelligent Imaging" workflow. It detects the Cytoo patterns (specific fluorsecence channel) and computes the occupancy (number of cells) of each pattern by analyzing the images of the DAPI channel. The analysis function can be easily extended to, for instance, only select the cells that are well spread on the patterns (by analyzing a third channel with a properly chosen marker of the cytoplasm).

need a thumbnail
Description

An example macro introduced in the documentation page of the ImageJ plugin Trainable Weka Segmentation (in Fiji, it's bundled). A segmentation protocol based on machine learning. Full macro is available in the "Download" Link. 

This plugin can be trained to learn from the user input and perform later the same task in unknown (test) data. Weka: it makes use of all the powerful tools and classifiers from the latest version of Weka. Segmentation: it provides a labeled result based on the training of a chosen classifier. Trainable Weka Segmentation Complete macro example is at the end of the page.

has topic
has function
Description

This tool adds to ImageJ functions to build and organize montages. It comes with the ImageJ installer but can also be downloaded from the ImageJ wiki. A video tutorial is available.

has topic
has function
need a thumbnail