Spot detection

Synonyms
Seed point detection
Description

CLIJ2 is a GPU-accelerated image processing library for ImageJ/FijiIcy, Matlab and Java. It comes with hundreds of operations for filteringbinarizinglabelingmeasuring in images, projectionstransformations and mathematical operations for images. While most of these are classical image processing operations, CLIJ2 also allows performing operations on matrices potentially representing neighborhood relationships between cells and pixels.

CLIJ2 was developed to process images from fluorescence microscopy data of developing cells, tissues, organoids and organisms.

Description

quote: 

GaussFit_OnSpot is an ImageJ plugin for fitting Gaussian profiles onto selected positions in diffraction-limited images (e.g. single molecules, protein clusters, vesicles, or stars).

The plugin performs a function fit in regions of interest (ROI) around spots marked by point selections in grayscale images. Single or multiple spots can be either selected manually with the Multi-point tool or automatically with the Find Maxima function.

There is a PDF with more information, and also an example image.

has function
Description

Quote " finding and/or analyzing colocalization of bright intensity spots (cells, particles, vesicles, comets, dots, etc) in images with heterogeneous background (microscopy, astronomy, engineering, etc). "

Uses Gaussian-Mexican hat convolution for preprocessing.

Description

h-Dome transformation, useful for spot detection.

Jython code example:

from de.unihalle.informatik.MiToBo.core.datatypes.images import MTBImage
from de.unihalle.informatik.MiToBo.morphology import HDomeTransform3D
from ij import IJ

imp = IJ.getImage()
mtb = MTBImage.createMTBImage( imp.duplicate() )
hdome = HDomeTransform3D(mtb, 10.0)
hdome.runOp()
mtbdone = hdome.getResultImage()
imp2 = mtbdone.getImagePlus()
imp2.show()

Description

This is a classical workflow for spot detection or blob like structures (vesicules, melanosomes,...)

Step 1 Laplacian of Gaussian to enhance spots . Paraeters= radius, about the average spot radius

Step 2 Detect minima (using Find Maxima with light background option to get minima). Parameter : Tolerance to Noise: to be tested, hard to predict. About the height of the enhanced feautures peaks

has topic
has function
spot detection